Sains Malaysiana 54(6)(2025): 1499-1508
http://doi.org/10.17576/jsm-2025-5406-06
Potensi Selulosa Bakteria dengan Gabungan Persicaria odorata sebagai Pad Penyerap Makanan Lestari
(Potential of Bacterial Cellulose Enriched with Persicaria odorata as a Sustainable Food Absorbent Pad)
NAFIZ ADHAM OTHMAN1, NUR ‘ALIAH DAUD1,
MAZIAH SUPIAN1, ABDUL SALAM BABJI1,2, NORANIDA RADZUAN3 & NURUL AQILAH MOHD ZAINI1,2,*
1Department
of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor,
Malaysia
2Innovation
Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
3Sri Nona
Food Manufacturing Sdn. Bhd., Rawang Integrated Industrial Park, 48000 Rawang, Selangor,
Malaysia
Diserahkan: 4
November 2024/Diterima: 25 Mac 2025
Abstrak
Pad penyerap makanan kebiasaannya diperbuat daripada bahan polimer tidak terurai seperti polietilena dan polipropilena. Inovasi pada pad penyerap makanan biourai adalah kaedah alternatif untuk memanfaatkan selulosa bakteria sebagai polimer yang mudah terurai. Penyelidikan ini dijalankan untuk menghasilkan pad penyerap makanan berasaskan selulosa bakteria daripada Komagateibacter xylinus menggunakan minuman kordial tamat tempoh sebagai medium pertumbuhan bakteria. Selain itu, potensi daun kesum Persicaria odorata sebagai agen anti-mikrob turut dikaji. Dua kaedah pengekstrakan iaitu 70% aseton dan air panas telah digunakan. Hasil ekstrak diuji keupayaannya pada analisis anti-mikrob untuk menghalang pertumbuhan bakteria patogen pada kepekatan berbeza (50-250 mg/mL). Hasil menunjukkan bahawa ekstrak aseton P. odorata pada kepekatan 200 mg/mL memberikan zon perencatan tertinggi terhadapEscherichia coli, Salmonella enterica subsp. enterica serovar Typhimurium dan Staphylococcus aureus dengan diameter zon perencatan masing-masing sebanyak 13.33±1.5,
12.67±0.58 dan 13.33±0.58 mm. Perencatan bakteria patogen oleh ekstrak aseton P. odorata adalah lebih baik berbanding ekstrak air panas P.
odorata. Peratus kadar penguraian selulosa bakteria kawalan adalah melebihi 50% dalam tempoh 10 hari dengan nilai 78.60% pada tanah loam dan 54.45% pada tanah pasir. Peratus kadar penguraian selulosa bakteria dengan ekstrak aseton P. odorata menunjukkan corak perkadaran yang sama dengan nilai 67.30% pada tanah loam, 66.35% pada tanah pasir dan 44.32% pada tanah merah. Penghasilan pad penyerap makanan dengan penambahan P. odorata boleh diaplikasikan secara gabungan di dalam pek bungkusan makanan dan berupaya untuk diurai oleh bakteria tanah. Kajian ini menunjukkan potensi selulosa bakteria dengan gabungan ekstrak P. odorata sebagai pembungkus makanan aktif untuk memelihara kebersihan dan keselamatan produk makanan.
Kata kunci: Anti-mikrob; biourai; pad penyerap makanan; Persicaria odorata; selulosa bakteria
Abstract
Food absorbent pads are usually made of
non-degradable polymer materials such as polyethylene and polypropylene.
Innovation in biodegradable food absorbent pads is an alternative method to
utilize bacterial cellulose as a biodegradable polymer. This study was carried
out to produce food absorbent pads based on bacterial cellulose from Komagateibacter xylinus using expired cordial drink as the bacterial growth medium. In addition, the
potential of kesum leaves Persicaria odorata as an anti-microbial agent was also
studied. Two methods of extraction, namely 70% acetone and hot water were used. The extract
was tested for its ability in anti-microbial analysis to inhibit the growth of
pathogenic bacteria at different concentration levels of 50-250 mg/mL. Results showed that the acetone extract of P.
odorata at a concentration of 200 mg/mL have the highest inhibition zone
against three species of pathogenic bacteria which is Escherichia coli, Salmonella enterica subsp. enterica serovar Typhimurium, and Staphylococcus aureus with an inhibition zone
diameter of 13.33±1.5 mm, 12.67±0.58 mm and 13.33±0.58 mm, respectively. The
inhibition of pathogenic bacteria by the acetone extract of P. odorata was better than the hot water extract of P. odorata. The percentage
degradation of control bacterial cellulose was more than 50% within 10 days
with a value of 78.60% at loam soil and 54.45% at sandy soil, in contrast to
red soil with a value of 47.10%. The percentage degradation of bacterial
cellulose with acetone extract of P. odorata showed the same proportion
pattern (>50%) with values of 67.30% at loam soil and 66.35%
at sandy soil. The development of food absorbent pads with the addition of P.
odorata can be applied in combination in the food packaging packs and is
able to be decomposed by soil bacteria. This study showed the potential of
bacterial cellulose with a combination of acetone extract P. odorata as
an active food wrapper with anti-microbial active ingredient content to
maintain the cleanliness and safety of food products.
Keywords: Anti-microbial; bacterial
cellulose; biodegradation; food absorbent pads; Persicaria odorata
RUJUKAN
Abubakar, M.A., Zulkifli, R.M., Hassan, W.N.A.W., Shariff, A.H.M., Malek,
N.A.N.N., Zakaria, Z. & Ahmad, F. 2015. Antibacterial properties of Persicaria minor (Huds.)
ethanolic and aqueous-ethanolic leaf extracts. Journal of Applied
Pharmaceutical Science 5: 50-56.
Adjuik,
T.A., Nokes, S.E. & Montross, M.D. 2023.
Biodegradability of bio-based and synthetic hydrogels as sustainable soil
amendments: A review. Journal of Applied Polymer Science 140: e53655.
Afiqah, A. & Aqilah, N. 2020. Potensi selulosa bakteria sebagai pembungkusan makanan lestari. Ijazah Sarjana Sains Muda, Tesis, Fakulti Sains dan Teknologi Universiti Kebangsaan Malaysia (Tidak diterbitkan).
Cazón, P. &
Vázquez, M. 2021. Improving bacterial cellulose films by ex-situ and in-situ modifications: A review. Food Hydrocolloids 113: 106514.
Chi, D.L.
& Scott, J.M. 2019. Added sugar and dental caries in children: A scientific
update and future steps. Dental Clinics of North America63(1):
17-33.
Dogbey, B.F.,
Ibrahim, S. & Abobe, J.A.E. 2020. Comparison of antioxidant
and antimicrobial activities of acetone and water extracts of Theobroma
cacao beans. Advances in Microbiology 10(09): 478-491.
Fabiana, F. 2021. Penghasilan selulosa bakteria daripada minuman cordial yang tamat tempoh dan potensi penggunaannya sebagai gel selulosa anti-pemerangan. Ijazah Sarjana Sains, Tesis, Fakulti Sains dan Teknologi Universiti Kebangsaan Malaysia (Tidak diterbitkan).
Famuyide, I.M., Aro, A.O., Fasina, F.O., Eloff,
J.N. & McGaw, L.J. 2019. Antibacterial and antibiofilm activity of acetone
leaf extracts of nine under-investigated south African Eugenia and Syzygium (Myrtaceae) species and
their selectivity indices. BMC Complementary and Alternative Medicine 19(1): 141.
Firouz,
M.S., Mohi-Alden, K. & Omid, M. 2021. A critical
review on intelligent and active packaging in the food industry: Research and
development. Food Research International 141: 110-113.
Francis, F., Zaki, Z.A.A.B. & Mohd Zaini,
N.A. 2022. Production of bacterial cellulose from expired cordial beverages and
their potential use as anti-bright cellulose gel. Sains Malaysiana 51(5): 1399-1410.
Isopencu, G., Deleanu, I., Busuioc, C., Oprea, O., Surdu,
V.A., Bacalum, M., Stoica, R. & Stoica-Guzun, A.
2023. Bacterial cellulose—Carboxymethylcellulose composite loaded with turmeric
extract for antimicrobial wound dressing applications. International Journal
of Molecular Sciences 24(2): 1719.
Kadier, A., Ilyas,
R.A., Huzaifah, M.R.M., Harihastuti,
N., Sapuan, S.M., Harussani,
M.M., Azlin, M.N.M., Yuliasni,
R., Ibrahim, R., Atikah, N., Wang, J., Chandrasekhar, K., Islam, A., Sharma,
S., Punia, S., Rajasekar, A., Asyraf, M.R.M., Ishak, M.R. & Puglia, D.
2021. Use of industrial wastes as sustainable nutrient sources for bacterial
cellulose (BC) production: Mechanism, advances, and future perspectives. Polymers 13(19): 3365.
Kamaruddin,
I., Dirpan, A. & Bastian, F. 2021. The novel
trend of bacterial cellulose as biodegradable and oxygen scavenging films for
food packaging application: An integrative review. IOP Conference Series:
Earth and Environmental Science 807: 022066.
Kiraman, N.A.S. &
Yusof, H. 2022. A mini review on the methods for the extraction, isolation, and
determination of P. odorata's bioactive
compounds. Healthscope 5(2): 38-44.
Kuppusamy, K.M., Selvaraj, S., Singaravelu, P., John,
C.M., Racheal, K., Varghese, K., Kaliyamoorthy, D.,
Perumal, E. & Gunasekaran, K. 2023. Anti-microbial and anti-cancer efficacy
of acetone extract of Rosa chinensis against resistant strain and lung
cancer cell line. BMC Complementary Medicine and Therapies 23(1): 406.
Mohammadkazemi, F., Azin, M.
& Ashori, A. 2015. Production of bacterial
cellulose using different carbon sources and culture media. Carbohydrate
Polymers 117: 518-523.
https://www.sciencedirect.com/science/article/pii/S014486171401011X
Ola, S.S.,
Catia, G., Marzia, I., Francesco, V.F., Afolabi, A.A. & Nadia, M. 2009.
HPLC/DAD/MS characterisation and analysis of flavonoids and cynnamoil derivatives in four Nigerian green-leafy vegetables. Food Chemistry 115(4): 1568-1574.
https://www.sciencedirect.com/science/article/pii/S030881460900199X
Pandey, S.,
Sharma, K. & Gundabala, V. 2022. Antimicrobial
bio-inspired active packaging materials for shelf life and safety development:
A review. Food Bioscience 48: 101730.
https://www.sciencedirect.com/science/article/pii/S2212429222001894
Pettersen,
M.K., Nilsen-Nygaard, J., Hansen, A.Å., Carlehög, M.
& Liland, K.H. 2021. Effect of liquid absorbent pads and packaging
parameters on drip loss and quality of chicken breast fillets. Foods 10(6):
1340.
Potivara, K. & Phisalaphong, M. 2019. Development and characterization of
bacterial cellulose reinforced with natural rubber. Materials 12(14):
2323.
Reis, D.T.,
dos Santos Pereira, A.K., Scheidt, G.N. & Pereira, D.H. 2019. Plant and
bacterial cellulose: Production, chemical structure, derivatives and
applications. Orbital: The Electronic Journal of Chemistry 11(5): 321-329.
Rodriguez-Chanfrau, J.E., Luiz Dos Santos, M., Dos Santos Riccardi,
C., De Olyveira, G.M., Hernández-Escalona,
M., Basmaji, P., Veranes-Pantoja, Y. & Guastaldi, A.C. 2017. Chemical modification of
bacterial cellulose for use in regenerative medicine. Cellulose Chemistry
and Technology 51(7-8): 673-680.
Saad, R.,
Khan, J., Krishnanmurthi, V., Asmani, F. & Yusuf,
E. 2014. Effect of different extraction techniques of Persicaria odorata extracts utilizing anti-bacterial
bioassay. British Journal of Pharmaceutical Research 4(18): 2146-2154.
Swingler, S.,
Gupta, A., Gibson, H., Kowalczuk, M., Heaselgrave, W.
& Radecka, I. 2021. Recent advances and applications of bacterial cellulose
in biomedicine. Polymers 13(3): 412.
Treesuppharat, W., Rojanapanthu, P., Siangsanoh, C., Manuspiya, H. & Ummartyotin,
S. 2017. Synthesis and characterization of bacterial cellulose and gelatin-based hydrogel composites for drug-delivery
systems. Biotechnology Reports 15: 84-91.
https://www.sciencedirect.com/science/article/pii/S2215017X17300735
Vázquez, M., Flórez,
M. & Cazón, P. 2024. A strategy to prolong cheese
shelf-life: Laminated films of bacterial cellulose and chitosan loaded with
grape bagasse antioxidant extract for effective lipid oxidation delay. Food
Hydrocolloids 156: 110232.
Vilela, C.,
Kurek, M., Hayouka, Z., Röcker, B., Yildirim, S.,
Antunes, M.D.C., Nilsen-Nygaard, J., Pettersen, M.K. & Freire, C.S.R. 2018.
A concise guide to active agents for active food packaging. Trends in Food
Science and Technology 80: 212-222.
Yi, T.J.,
Francis, F., Mutalib, S.A. & Zaini, N.A.M. 2022. Antimicrobial activity of
bacterial cellulose from Komagataeibacter xylinus using expired commercial sweet drinks as a
source of carbon. Sains Malaysiana 51(8): 2695-2711.
Zahan, K.A.,
Azizul, N.M., Mustapha, M., Tong, W.Y., Abdul Rahman, M.S. & Sahuri, I.S.
2020. Application of bacterial cellulose film as a biodegradable and
antimicrobial packaging material. Materials Today: Proceedings 31: 83-88. https://www.sciencedirect.com/science/article/pii/S2214785320302674
*Pengarang untuk surat-menyurat; email: nurulaqilah@ukm.edu.my